Repaso a PyData 2013

Unos días después de la PyConUS 2013 se celebró la primera PyData del año (creo que serán semestrales de forma regular aunque el tiempo dirá). Entre las charlas había algunas introductorias, otras más avanzadas y otras enseñando aplicaciones prácticas.

Entre las charlas introductorias destacaremos:

Introducción a Numpy por Bryan Van De Ven: si no conoces absolutamente nada de Numpy esta es tu charla. Da un repaso por las cosas más frecuentes del uso de Numpy sin meterse en cosas muy esotéricas. Puedes sacar la libreta e ir apuntando las cosas que creas que te puedan resultar útiles para tus análisis.

Pandas por Wes McKinney: Es una charla introductoria. El problema que veo es que Pandas no es algo tan centrado como Numpy con su ndarray, las posibilidades de uso son múltiples y, quizá, hacer algo introductorio en vídeo sobre Pandas no resulte tan sencillo como  hacerlo con Numpy. En general, la documentación de Pandas es aceptable (aunque incompleta en algunos momentos) y la veo como un buen punto de partida antes de empezar a ver vídeos sobre Pandas. Creo que lo mejor para empezar con Pandas es echarle un ojo al tour de 10 minutos en vídeo o en texto) y luego empezar a trastear con la librería y con la documentación para empezar a entenderlo. Por nuestra parte, estamos preparando nuestro tutorial cuyos primeros capítulos estaran disponibles en breve, stay tuned!!!! En esta conferencia ha habido más vídeos sobre Pandas pero son más avanzados (primero para marujear con datos de forma productiva, segundo (con numpy y statsmodels) para análisis de series temporales) .

Aprendiendo Python por Peter Norvig: Otro tutorial más para empezar con Python!!

Hacer bonitos gráficos con MatPlotLib por Mike Müller: Otro más avanzado muestra como hacer MatPlotLib más interactivo gracias al gran Jake Vanderplas. Os dejamos aquí nuestro tutorial de matplotlib por si alguno no lo conoce aún (#autobombo).

Visualización de datos con NodeBox por Lynn Cherny: Librería para hacer gráficos más 'artísticos'. Yo tengo sentimientos encontrados con algunos enfoques de este tipo de gráficos (NodeBox, D3,...) por lo que te recomiendo mejor verlo y, si alguien quiere, lo discutimos en los comentarios.

Scikit-image por Davin Potts: Creo que esta librería es una de las grandes desconocidas y ofrece unas posibilidades muy interesantes. Si no la conoces deberías echarle un ojo al vídeo.

Entre las que hablan sobre cosas más prácticas y no específicamente de librerías destacaría (alguna no porque me haya gustado especialmente):

Análisis de redes sociales por Katherine Chuang: Estas están muy de moda (teoría de grafos) y están empezando a ser aburridas si no muestran algo excepcional o no sacan conclusiones **medibles** de todo el análisis chachiguay que hacen. Usa NetworkX, también muy de moda.

Plataforma de datos espacio temporales para el océano por André Karpistsenko: Esta me ha parecido interesante ya que muestra todo el pifostio de tecnologías y trabajo que hay detrás de muchas webs a las que voy a descargarme datos para mis análisis.

Hay más charlas avanzadas que hablan de HDF5 ([1]), Machine Learning ([1], [2], [3]), Blaze (el futuro de Numpy), IPython y más cosas del Big Data y herramientas Python para lidiar con ello.

Si le echáis un ojo a algún vídeo, por favor, dejad algún comentario más abajo para saber lo que os ha parecido.

Saludos y espero veros pronto entre esa gran cantidad de datos :-P