Introducción a Machine Learning con Python (Parte 1)

Desde que escuché hablar de Kaggle por primera vez, precisamente a través de Pybonacci, me entró curiosidad por eso del data science y me propuse como un reto el participar en una de sus competiciones. Para aquel que no la conozca todavía, Kaggle es una plataforma que aloja competiciones de análisis de datos y modelado predictivo donde compañías e investigadores aportan sus datos mientras que estadistas e ingenieros de datos de todo el mundo compiten por crear los mejores modelos de predicción o clasificación.

Muchas y muy diferentes técnicas se pueden aplicar al procesado de datos para generar predicciones, estimaciones o clasificaciones. Desde técnicas de regresión logística hasta redes neuronales artificiales pasando por redes bayesianas, máquinas de vectores de soporte o árboles de decisión, en Kaggle no descartan ningún método, e incluso se fomenta la cooperación entre personas con experiencia en diferentes campos para obtener el mejor modelo posible. Varias de estas técnicas se encuadran dentro de lo que es el Machine Learning, o aprendizaje automático, que nos explica Jeremy Howard en el siguiente vídeo.

Sigue leyendo... >