El producto de matrices y el nuevo operador @

Introducción.

El 13 de septiembre de 2015 fue lanzada la versión 3.5 de Python. Entre las novedades podemos encontrar la inclusión del PEP 465 que trata sobre el nuevo operador @ para la multipliación matricial y del que hablaremos en este post. Como bien sabrán los lectores de este blog, los arrays son la piedra angular de numerosísimas áreas de la programación científica y sirven para realizar operaciones de forma masiva y mucho más eficiente. Esto, sumado a la posibilidad de utilizarlos como matrices, proporciona una herramienta muy potente para llevar a cabo operaciones algebraicas. NumPy es la librería que nos permite utilizar esta maravillosa estructura de datos y según figura en el ya citado PEP, podría ser la librería fuera de la librería estándar más importada del mundo Python.

Continue reading

Cómo crear matrices en Python con NumPy

Introducción

En este breve apunte vamos a ver cómo crear matrices en Python usando la biblioteca NumPy. Para ello, vamos a hacer un repaso rápido de los métodos que ofrece NumPy para crear arrays y matrices.

Si buscas por Internet encontrarás varias recetas de cómo crear una matriz en Python utilizando listas, es decir, haciendo uso solamente de la biblioteca estándar. Sin embargo, aquí asumimos que vamos a emplear la matriz básicamente para hacer cálculos matemáticos con ella, y por otro lado en nuestro caso no supone un problema añadir NumPy como dependencia porque por unas razones o por otras lo íbamos a necesitar 😉

Esta entrada es básicamente una recopilación de los métodos listados en la documentación de NumPy. Otro día veremosEn este artículo en nuestro blog puedes leer cómo construir arrays a partir de ficheros externos.

Editado el 13 de junio de 2012: Añadidas funciones para crear arrays de NumPy a partir de listas y una nota sobre el peligro de la función empty.

En esta entrada se ha usado python 2.7.3 y numpy 1.6.1 y es compatible con python 3.2.3

Arrays vacíos, unos y ceros

Con estas funciones podemos crear una matriz en Python cuando conocemos el tamaño pero no conocemos los datos que va a contener, o cuando por cualquier motivo queremos matrices llenas de unos o de ceros. Para ello utilizaremos las funciones empty, zeros y ones, que aceptan como argumento una tupla con las dimensiones del array:

In [1]: import numpy as np
In [2]: np.empty((2, 3))  # Matriz vacía, con valores residuales de la memoria
Out[2]:
array([[  0.00000000e+000,   1.19528827e-316,   6.94132801e-310],
       [  1.41077362e-316,   6.94132772e-310,   6.94132772e-310]])
In [3]: np.zeros((3, 1))  # Matriz de ceros
Out[3]:
array([[ 0.],
       [ 0.],
       [ 0.]])
In [4]: np.ones((3, 2))  # Matriz de unos
Out[4]:
array([[ 1.,  1.],
       [ 1.,  1.],
       [ 1.,  1.]])

Continue reading

Álgebra Lineal en Python con NumPy (I): Operaciones básicas

Introducción

En esta entrada vamos a ver una introducción al Álgebra Lineal en Python con NumPy. En la mayoría de los artículos que hemos escrito hasta ahora en Pybonacci hemos tocado sin mencionarlos conceptos relativos al Álgebra Lineal: sin ir más lejos, el propio manejo de matrices o la norma de vectores. El lenguaje matricial es el punto de partida para una enorme variedad de desarrollos físicos y matemáticos, y por eso le vamos a dedicar un apartado especial para repasar las posibilidades que ofrece el paquete NumPy.

  1. Operaciones básicas
  2. Sistemas, autovalores y descomposiciones

En esta entrada se ha usado python 2.7.3 y numpy 1.6.1 y es compatible con python 3.2.3

Arrays y matrices

Como ya comentamos hace tiempo en nuestra introducción a Python, el paquete NumPy introdujo los arrays N-dimensionales, que no son más que colecciones homogéneas de elementos indexados usando N elementos. Los hemos utilizado constantemente usando las funciones de creación de arrays:

In [1]: import numpy as np
In [2]: np.array([1, 2, 3])  # Array de una lista
Out[2]: array([1, 2, 3])
In [3]: np.arange(5)  # Array de 5 enteros contando el 0
Out[3]: array([0, 1, 2, 3, 4])
In [4]: np.zeros((2, 3))  # Array de ceros de 2x3
Out[4]:
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])
In [5]: np.linspace(0.0, 1.0, 5)  # Discretización de [0, 1] con 5 puntos
Out[5]: array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ])

Además de los arrays, con NumPy también podemos manejar matrices. Aunque parecen lo mismo, se utilizan de manera distinta; si alguien quiere investigar las diferencias, puede consultar la página NumPy para usuarios de MATLAB (en inglés).

Continue reading

Cómo crear una matriz tridiagonal en Python con NumPy y SciPy

Introducción

En este rápido apunte vamos a ver cómo construir una matriz tridiagonal en Python utilizando NumPy y SciPy. Una matriz tridiagonal es una matriz cuadrada que solamente tiene elementos distintos de cero en su diagonal principal y en las dos diagonales adyacentes a esta (la superdiagonal y la subdiagonal). Las matrices tridiagonales aparecen mucho en cálculo numérico, por ejemplo en la discretización de ecuaciones diferenciales, y tienen la característica de ser matrices dispersas (en lugar de densas) al ser la mayoría de sus elementos cero.

Sin que sirva de precedente, hoy vamos a escribir código que sea compatible tanto con Python 2 como con Python 3. Es un cambio nimio, pero merece la pena ir acostumbrándose a pensar que tarde o temprano habrá que abandonar Python 2 🙂

En esta entrada se ha usado python 2.7.3, numpy 1.6.1 y scipy 0.10.1 y es compatible con python 3.2.3.

Continue reading