Tutoriales

Cómo calcular límites, derivadas, series e integrales en Python con SymPy

Introducción

Como buen paquete de cálculo simbólico que es, Sympy ofrece numerosas posibilidades para realizar tareas comunes del cálculo infinitesimal, como son calcular límites, derivadas, series e integrales simbólicas. Por ejemplo, mientras que con SciPy podemos calcular, utilizando diferencias centradas, la derivada de una función en un punto utilizando la función scipy.misc.derivative, con SymPy podemos calcular la derivada simbólica de la función.
Si no conoces SymPy, puedes leer nuestra Introducción al Cálculo Simbólico en Python con SymPy para hacerte una idea del manejo del paquete. Este artículo está basado en la sección de Cálculo Infinitesimal del tutorial de SymPy, y en él utilizaremos el intérprete interactivo de SymPy (isympy) que viene incluido con el paquete; para que el código funcione en un programa Python normal, sólo habría que incluir las correspondientes sentencias import.
Leer más »Cómo calcular límites, derivadas, series e integrales en Python con SymPy

Regiones de estabilidad de métodos numéricos en Python

Introducción

Hoy veremos cómo computar con Python la región de estabilidad absoluta de un método numérico para resolver problemas de valores iniciales en ecuaciones diferenciales ordinarias, una herramienta muy importante a la hora de escoger un método numérico adecuado para integrar nuestro problema concreto. Se trata simplemente de otro ejemplo aplicado de lo que publicamos hace unos días sobre cómo pintar curvas de nivel con matplotlib; si quieres ver otro más, puedes leer nuestro ejemplo de uso de Basemap y NetCDF4, donde vimos cómo representar datos climatológicos.
En esta entrada se ha usado python 2.7.3, numpy 1.6.1 y matplotlib 1.1.0.
Leer más »Regiones de estabilidad de métodos numéricos en Python

Estadística en Python con SciPy (I)

Introducción

Hoy vamos a ver cómo trabajar con variable aleatoria con el módulo stats de la biblioteca Scipy. Scipy viene con numerosas distribuciones de probabilidad, tanto discretas como continuas, y además pone a nuestra disposición herramientas para crear nuestras propias distribuciones y multitud de herramientas para hacer cálculos estadísticos. En esta primera parte nos centraremos en cómo manejar esas distribuciones y sus funciones de distribución, cómo representarlas con matplotlib y cómo definir nuevas distribuciones.
En esta entrada se ha usado python 2.7.3, numpy 1.6.1, matplotlib 1.1.0 y scipy 0.10.1.
Leer más »Estadística en Python con SciPy (I)

Ecuaciones no lineales: método de bisección y método de Newton en Python

En este artículo vamos a ver cómo implementar en Python el método de bisección y el método de Newton, dos métodos iterativos clásicos para hallar raíces de ecuaciones no lineales de la forma , con  y . Estos métodos y muchos otros más refinados están ya implementados en multitud de bibliotecas muy utilizadas,… Leer más »Ecuaciones no lineales: método de bisección y método de Newton en Python

Ejemplo de uso de Basemap y NetCDF4

Continuando lo que enseñó Juanlu en la anterior entrada vamos a mostrar líneas de nivel y temperatura del aire en la superficie, en este caso la presión al nivel del mar del día 01 de enero de 2012 a las 00.00 UTC según los datos extraídos del reanálisis NCEP/NCAR, sobre un mapa con la ayuda de la librería Basemap.
Como los datos del reanálisis NCEP/NCAR vienen en formato netCDF usaremos la librería netcdf4-python. El formato netCDF es un estándar abierto y es ampliamente usado en temas de ciencias de la tierra, atmósfera, climatología, meteorología,… No es estrictamente necesario usar netcdf4-python para acceder a ficheros netCDF puesto que desde scipy tenéis esta funcionalidad. Pero bueno, yo uso esta por una serie de ventajas que veremos otro día.
En la presente entrada se ha usado python 2.7.2, numpy 1.6.1, matplotlib 1.1.0, netCDF4 0.9.7 y Basemap 1.0.2.
Primero de todo vamos a importar todo lo que necesitamos:
[sourcecode language=”python”]
## Importamos las librerías que nos hacen falta
import numpy as np
import netCDF4 as nc
import matplotlib.pyplot as plt
from mpl_toolkits import basemap as bm
[/sourcecode]
Los ficheros netCDF de presión al nivel del mar y de Temperatura del aire de la superficie los podéis descargar de aquí y aquí, respectivamente. Veréis un enlace que pone ‘FTP a copy of the file’, lo pincháis y guardáis en el mismo sitio donde tengáis el script que estamos haciendo en la presente entrada.
Una vez que tenemos los ficheros los podemos abrir usando la librería netCDF4-python:
[sourcecode language=”python”]
## Abrimos los ficheros de datos,
## el nombre de los ficheros lo tendréis que cambiar
## con el nombre de los ficheros que os habéis descargado
slp = nc.Dataset(‘X83.34.8.250.104.4.18.19.nc’) #slp por ‘sea level pressure’
tsfc = nc.Dataset(‘X83.34.8.250.104.4.15.31.nc’) #tsfc ‘por temperature at surface’
[/sourcecode]
Leer más »Ejemplo de uso de Basemap y NetCDF4

Introducción al Cálculo Simbólico en Python con SymPy

Introducción

En este artículo voy a hacer una introducción a SymPy, una biblioteca para hacer Cálculo Simbólico en Python a la vez que un sistema de álgebra computacional (o CAS en inglés) muy prometedor. Si alguna vez te has preguntado cómo hacer derivadas y resolver ecuaciones con Python o conoces ya sistemas como Mathematica o Maple pero prefieres utilizar una solución libre, has venido al sitio correcto.
Actualmente el desarrollo de SymPy está muy activo: a pesar de ser un CAS bastante completo, todavía tiene algunas cosas que sus desarrolladores piensan pulir a lo largo de los próximos meses y están trabajando duro para ello. Personalmente es uno de mis proyectos de software libre favoritos, por la buenísima documentación que escriben, por lo elegante que queda el código y por lo bonita que es su web 😛
SymPy tiene una característica que no tienen ninguno de sus competidores, tanto libres como no libres: se puede utilizar de manera interactiva como los CAS a los que estamos acostumbrados, pero también se puede integrar con nuestro código Python como una biblioteca más.
Se puede probar online, y también se puede descargar e instalar fácilmente. Para lanzar la consola interactiva (basada en IPython) sólo tendremos que escribir

Para este tutorial se asumirá que estamos trabajando con la consola interactiva de SymPy 0.7.1. Para que el código funcione también en modo no interactivo solamente habrá que incluir los oportunos import y sustituir las variables dinámicas de IPython (_, _n, etc.) por variables reales. Podéis encontrar en Internet la documentación de SymPy 0.7.1. ¡Vamos allá!
Leer más »Introducción al Cálculo Simbólico en Python con SymPy

¿Cómo encontrar el mínimo de una función usando scipy?

NOTICE: Esta entrada es una traducción libre (algunas cosas no serán traducidas por no existir una traducción sencilla en castellano) de un artículo publicado en The Glowing Python con permiso de su autor. Para la siguiente entrada se ha usado python 2.7.2, numpy 1.6.1, scipy 0.9.0 y matplotlib 1.1.0 En… Leer más »¿Cómo encontrar el mínimo de una función usando scipy?