Saltar al contenido

numpy

Cómo crear una matriz tridiagonal en Python con NumPy y SciPy

Introducción

En este rápido apunte vamos a ver cómo construir una matriz tridiagonal en Python utilizando NumPy y SciPy. Una matriz tridiagonal es una matriz cuadrada que solamente tiene elementos distintos de cero en su diagonal principal y en las dos diagonales adyacentes a esta (la superdiagonal y la subdiagonal). Las matrices tridiagonales aparecen mucho en cálculo numérico, por ejemplo en la discretización de ecuaciones diferenciales, y tienen la característica de ser matrices dispersas (en lugar de densas) al ser la mayoría de sus elementos cero.
Sin que sirva de precedente, hoy vamos a escribir código que sea compatible tanto con Python 2 como con Python 3. Es un cambio nimio, pero merece la pena ir acostumbrándose a pensar que tarde o temprano habrá que abandonar Python 2 🙂
En esta entrada se ha usado python 2.7.3, numpy 1.6.1 y scipy 0.10.1 y es compatible con python 3.2.3.
Leer más »Cómo crear una matriz tridiagonal en Python con NumPy y SciPy

Regiones de estabilidad de métodos numéricos en Python

Introducción

Hoy veremos cómo computar con Python la región de estabilidad absoluta de un método numérico para resolver problemas de valores iniciales en ecuaciones diferenciales ordinarias, una herramienta muy importante a la hora de escoger un método numérico adecuado para integrar nuestro problema concreto. Se trata simplemente de otro ejemplo aplicado de lo que publicamos hace unos días sobre cómo pintar curvas de nivel con matplotlib; si quieres ver otro más, puedes leer nuestro ejemplo de uso de Basemap y NetCDF4, donde vimos cómo representar datos climatológicos.
En esta entrada se ha usado python 2.7.3, numpy 1.6.1 y matplotlib 1.1.0.
Leer más »Regiones de estabilidad de métodos numéricos en Python

Estadística en Python con SciPy (I)

Introducción

Hoy vamos a ver cómo trabajar con variable aleatoria con el módulo stats de la biblioteca Scipy. Scipy viene con numerosas distribuciones de probabilidad, tanto discretas como continuas, y además pone a nuestra disposición herramientas para crear nuestras propias distribuciones y multitud de herramientas para hacer cálculos estadísticos. En esta primera parte nos centraremos en cómo manejar esas distribuciones y sus funciones de distribución, cómo representarlas con matplotlib y cómo definir nuevas distribuciones.
En esta entrada se ha usado python 2.7.3, numpy 1.6.1, matplotlib 1.1.0 y scipy 0.10.1.
Leer más »Estadística en Python con SciPy (I)

Ejemplo de uso de Basemap y NetCDF4

Continuando lo que enseñó Juanlu en la anterior entrada vamos a mostrar líneas de nivel y temperatura del aire en la superficie, en este caso la presión al nivel del mar del día 01 de enero de 2012 a las 00.00 UTC según los datos extraídos del reanálisis NCEP/NCAR, sobre un mapa con la ayuda de la librería Basemap.
Como los datos del reanálisis NCEP/NCAR vienen en formato netCDF usaremos la librería netcdf4-python. El formato netCDF es un estándar abierto y es ampliamente usado en temas de ciencias de la tierra, atmósfera, climatología, meteorología,… No es estrictamente necesario usar netcdf4-python para acceder a ficheros netCDF puesto que desde scipy tenéis esta funcionalidad. Pero bueno, yo uso esta por una serie de ventajas que veremos otro día.
En la presente entrada se ha usado python 2.7.2, numpy 1.6.1, matplotlib 1.1.0, netCDF4 0.9.7 y Basemap 1.0.2.
Primero de todo vamos a importar todo lo que necesitamos:
[sourcecode language=”python”]
## Importamos las librerías que nos hacen falta
import numpy as np
import netCDF4 as nc
import matplotlib.pyplot as plt
from mpl_toolkits import basemap as bm
[/sourcecode]
Los ficheros netCDF de presión al nivel del mar y de Temperatura del aire de la superficie los podéis descargar de aquí y aquí, respectivamente. Veréis un enlace que pone ‘FTP a copy of the file’, lo pincháis y guardáis en el mismo sitio donde tengáis el script que estamos haciendo en la presente entrada.
Una vez que tenemos los ficheros los podemos abrir usando la librería netCDF4-python:
[sourcecode language=”python”]
## Abrimos los ficheros de datos,
## el nombre de los ficheros lo tendréis que cambiar
## con el nombre de los ficheros que os habéis descargado
slp = nc.Dataset(‘X83.34.8.250.104.4.18.19.nc’) #slp por ‘sea level pressure’
tsfc = nc.Dataset(‘X83.34.8.250.104.4.15.31.nc’) #tsfc ‘por temperature at surface’
[/sourcecode]
Leer más »Ejemplo de uso de Basemap y NetCDF4

Integrando ecuaciones diferenciales: método leapfrog en Python

Introducción En Python tenemos numerosas herramientas listas para que podamos integrar ecuaciones diferenciales ordinarias sin tener que preocuparnos en implementar un esquema numérico. Sin ir más lejos, en el módulo integrate de SciPy existen varias funciones a tal efecto. La función odeint es una interfraz en Python a la biblioteca ODEPACK,… Leer más »Integrando ecuaciones diferenciales: método leapfrog en Python

Pybonacci